这篇《一元二次方程》的教学设计由朝阳中学在线教研给你提供!主要内容为....
当前位置:主页 > 教学设计 >

一元二次方程

减小字体 增大字体 作者:panpan  类型:盼盼的家园  发布时间:2018-12-31 14:16  浏览数:

【教学目标】:

1. 知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式 ( ≠0)

2. 在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

3. 会用试验的方法估计一元二次方程的解。

【重点难点】:

1.一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。

2. 理解用试验的方法估计一元二次方程的解的合理性。

【教学过程】:

一 做一做:

1.问题一 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?

分 析

我们可以运用方程解决实际问题.现设长方形绿地的宽为x米,不难列出方程

x(x+10)=900

整理可得 x2+10x-900=0.  (1)

2.问题2

学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.

分 析

设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册;同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)(1+x)=5(1+x)2万册.可列得方程

5(1+x)2=7.2,

整理可得 5x2+10x-2.2=0.   (2)

3.思考、讨论

这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.

那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?

( 学生分组讨论,然后各组交流 )

共同特点:(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2

二、 一元二次方程的概念

上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程).通常可写成如下的一般形式:

ax2+bx+c=0(a、b、c是已知数,a≠0)。 其中 叫做二次项, 叫做二次项系数; 叫做一次项, 叫做一次项系数, 叫做常数项。.

三、 例题讲解与练习巩固

1.例1下列方程中哪些是一元二次方程?试说明理由。

(1) (2) (3) (4)
2.例2 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:

1) 2)(x-2)(x+3)=8 3)
说明: 一元二次方程的一般形式 ( ≠0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0。此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。

3.例3 方程(2a—4)x2 —2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?

本题先由同学讨论,再由教师归纳。

解:当 ≠2时是一元二次方程;当 =2, ≠0时是一元一次方程;

4.例4 已知关于x的一元二次方程(m-1)x2+3x-5m+4=0有一根为2,求m。

分析:一根为2即x=2,只需把x=2代入原方程。

5.练习一 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项

1
 

 

Tags:

  • ·上一篇:一元二次方程的解法
  • ·下一篇:修饰板报中的文字